Experimental diabetes attenuates cerebral cortical-evoked forelimb motor responses.

نویسندگان

  • April J Emerick
  • Michael P Richards
  • Gwendolyn L Kartje
  • Edward J Neafsey
  • Evan B Stubbs
چکیده

Poorly controlled diabetes leads to debilitating peripheral complications, including retinopathy, nephropathy, and neuropathy. Chronic diabetes also impairs the central nervous system (CNS), leading to measurable deficits in cognition, somatosensory, and motor function. The cause of diabetes-associated CNS impairment is unknown. In this study, sustained hyperglycemia resulting from insulin deficiency was shown to contribute to CNS motor dysfunction. Experimental diabetes was induced in rats by streptozotocin (STZ) injection. CNS motor function was assessed by intracortical microstimulation of the sensorimotor cortex. Experimental diabetes significantly (P < 0.01; n = 14) attenuated the number of motor cortical sites eliciting forelimb movements. The net area of the motor cortex representing the forelimb in diabetic rats was significantly reduced (4.0 +/- 0.5 [control] vs. 2.4 +/- 0.4 [STZ] mm(2); P < 0.05). Experimental diabetes attenuated the activation of some, but not all, forelimb motor cortical neurons. Insulin treatment of diabetic rats prevented the attenuation of cortical-evoked forelimb responses. Peripheral nerve-evoked responses were unaffected by this short period of diabetes, suggesting the absence of peripheral nerve dysfunction. This study showed that metabolic imbalance resulting from insulin deficiency elicits a marked attenuation of cortical-evoked motor function. Uncontrolled hyperglycemia, deficiencies of central insulin, or both may contribute to corticospinal motor dysfunction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diabetes impairs cortical plasticity and functional recovery following ischemic stroke.

Diabetics are at greater risk of having a stroke and are less likely to recover from it. To understand this clinically relevant problem, we induced an ischemic stroke in the primary forelimb somatosensory (FLS1) cortex of diabetic mice and then examined sensory-evoked changes in cortical membrane potentials and behavioral recovery of forelimb sensory-motor function. Consistent with previous stu...

متن کامل

Neurobiology of Disease Diabetes Impairs Cortical Plasticity and Functional Recovery Following Ischemic Stroke

Diabetics are at greater risk of having a stroke and are less likely to recover from it. To understand this clinically relevant problem, we induced an ischemic stroke in the primary forelimb somatosensory (FLS1) cortex of diabetic mice and then examined sensory-evoked changes in cortical membrane potentials and behavioral recovery of forelimb sensory-motor function. Consistent with previous stu...

متن کامل

Distinct Cortical Circuit Mechanisms for Complex Forelimb Movement and Motor Map Topography

Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic ...

متن کامل

Development/Plasticity/Repair In Vivo Voltage-Sensitive Dye Imaging in Adult Mice Reveals That Somatosensory Maps Lost to Stroke Are Replaced over Weeks by New Structural and Functional Circuits with Prolonged Modes of Activation within Both the Peri-Infarct Zone and Distant Sites

After brain damage such as stroke, topographically organized sensory and motor cortical representations remap onto adjacent surviving tissues. It is conceivable that cortical remapping is accomplished by changes in the temporal precision of sensory processing and regional connectivity in the cortex. To understand how the adult cortex remaps and processes sensory signals during stroke recovery, ...

متن کامل

Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps.

Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 54 9  شماره 

صفحات  -

تاریخ انتشار 2005